X
تبلیغات
رایتل

طراحی و کنترل یک مبدل DC/DC چند ورودی افزاینده برای منابع انرژی‌های تجدیدپذیر. doc

یکشنبه 14 آذر 1395 ساعت 10:42
طراحی و کنترل یک مبدل DC/DC چند ورودی افزاینده برای منابع انرژی‌های تجدیدپذیر. doc
در این طراحی و کنترل یک مبدل DCبرDC چند ورودی افزاینده برای منابع انرژی‌های تجدیدپذیر. doc پرداخته است
طراحی و کنترل یک مبدل DC/DC چند ورودی افزاینده برای منابع انرژی‌های تجدیدپذیر. doc






نوع فایل: word
قابل ویرایش 95 صفحه

چکیده:
در این پایان نامه یک مبدل DC به DC افزاینده برای منابع انرژی تجدیدپذیر PV/FC به همراه یک المان ذخیره کننده انرژی، باتری، پیشنهاد می شود. مبدل پیشنهادی دو پورت توان یک جهته برای منابع توان ورودی و یک پورت توان دوجهته برای المان ذخیره کننده انرژی را در یک ساختار واحد فراهم می آورد. این مبدل به منظور ترکیب منابع انرژی های نو از جمله منبع فتوولتائیک، منبع پیل سوختی و باتری (به عنوان منبع ذخیره توان) توصیه می شود. تامین بار خروجی و شارژ یا دشارژ باتری می تواند توسط هر کدام از منابع ورودی چه به صورت ترکیبی و چه به صورت منفرد صورت پذیرد. در ساختار مبدل پیشنهادی فقط از چهار کلید قدرت استفاده شده است. با کنترل مناسب این کلیدها، استحصال حداکثر توان از منبع توان فتوولتائیک، تنظیم توان منبع FC، کنترل میزان توان شارژ و دشارژ باتری و تنظیم ولتاژ خروجی میسر می شود. در این مبدل، بسته به حالت استفاده از باتری، سه مد عملکرد متفاوت برای باتری تعریف می شود. به منظور بررسی دینامیکی مبدل، در هر کدام از مدهای عملکرد مدار، مدل سیگنال کوچک مبدل محاسبه می شود. برای کنترل مبدل پیشنهادی از روش کنترل پیش بین براساس مدل استفاده شده است. در این پایان نامه، عملکرد مبدل پیشنهادی و سیستم کنترلی طراحی شده برای آن، توسط شبیه سازی و نتایج نمونه آزمایشگاهی برای مدهای متفاوت عملکرد مبدل پیشنهادی ارزیابی می شود.

مقدمه:
امروزه انرژی الکتریکی در دنیا به مقدار زیادی توسط ذغال سنگ، نفت و گاز طبیعی تولید می شود. سوخت های فسیلی منابع محدودی دارند وهمچنین تجدید ناپذیرند که رفته رفته به اتمام می رسند. اما، انرژی های نو که تجدید پذیراند مانند پیل سوختی ، انرژی خورشیدی باد جایگزین می شوندوتمام نشدنی هستند.
هیدروژن می تواند در بسیاری از ترکیبات اصلی، مثل آب، یافت شود. هیدروژن فراوان ترین عنصر روی زمین است، اما بصورت یک گاز طبیعی موجود نیست. هیدروژن همیشه با دیگر عناصر ترکیب شده است، مثل ترکیبش با اکسیژن برای ساخت آب. وقتی هیدروژن از عنصر ترکیبی اش جدا شود، می تواند بعنوان سوخت مورد استفاده قرار گیرد . انرژی زمین گرمایی دریچه گرمای درون زمین برای کاربردهای متنوع شامل: تولید توان الکتریکی و گرم و سرد کردن ساختمان هاست. انرژی جزر و مد اقیانوس ها از نیروی کشش ماه و خورشید بر روی زمین ناشی می شود. در حقیقت، انرژی اقیانوس از منابع متعددی ناشی می شود. علاوه بر انرژی جزر و مد، انرژی امواج اقیانوس بوسیله هر دو انرژی جزر و مد و باد، بوجود می آید. هم چنین خورشید بیش از آنکه عمق اقیانوس را گرم کند سطح آنرا گرم می کند. ایجاد یک اختلاف دما می تواند بعنوان یک منبع انرژی بکار گرفته شود. تمامی اشکال
انرژی اقیانوسی می توانند برای تولید الکتریسیته به کار برده شوند انرژی خورشید را می توان به صورت مستقیم توسط پنل های خورشیدی جذب و به انرژی الکتریکی تبدیل کرد. بسیاری از منابع انرژی های نو و تجدیدپذیر نیازمند مبدل های توان برای تبدیل توان خروجی به انرژی الکتریکی قابل بهره برداری توسط مصرف کننده می باشند.
یکی از بارزترین مشکلات تکنولوژی و فن آوری در عرصه بهره گیری از منابع انرژی های نو و تجدیدپذیر، علاوه بر خود منابع، مبدل های توان بکار رفته در این منابع می باشند.
در حال حاضر در بسیاری از مراجع علمی وعملی،از انرژی خورشیدی در قالب سیستمهای فتوولتائیک (PV) برای کاربردهای کم توان شهری و مصرف کننده هایی که از شبکه برق دورند ، بسیار تحقیق می شود. اما از آنجاییکه تولید توان الکتریکی از این انرژی به دلیل صفر شدن توان تولیدی انرژی خورشیدی در شب و وابسته بودن آن به شدت روشنایی و دمای محیط در روز دارای قابلیت اطمینان پایینی است، استفاده از یک منبع انرژی تکمیلی جهت افزایش قابلیت اطمینان تولید احساس می شود. در این میان پیل سوختی (FC) به عنوان یک منبع انرژی الکتریکی سبز و با قابلیت اطمینان بالا در قالب یک سیستم هیبرید در کنار منبع PV قرار می گیرد. منبع FC نیز به نوبه خود دارای مسائل بهره برداری از جمله ریپل وسیع نقطه کار ،زمان راه اندازی بالاو همچنین دینامیک پایین در تولید توان است.
در سال های گذشته در زمینه تولید انرژی از منابع انرژی های نو، مطالعات وتحقیقات فراوانی در جهت استفاده ترکیبی از این منابع انرژی انجام شده است. این سیستم ها با عنوان سیستم های هیبریدی از منابع انرژی نو شناخته می شوند . با رویکرد به سمت سیستم های هیبریدی از منابع انرژی های نو، طراحی مبدل های توان متناسب با این سیستم ها نیز مورد توجه قرار گرفتند و این سیستمها به دلیل قابلیت اطمینان بالاتر نسبت به سیستم های منفرد در تولید توان، از اهمیت ویژه ای برخوردار می باشند. تا به امروز مبدل های الکترونیک قدرت متنوعی برای سیستم های هیبریدی در مقالات و تحقیقات مختلف، ارائه شده اند اما هنوز، این سیستم ها دارای برخی از مشکلات می باشند. این مبدل ها بایستی قابلیت شارژ و دشارژ باتری را به میزان لازم داشته و همچنین بتواند حداکثر توان را با کنترل مناسب از سلول خورشیدی دریافت کند. با توجه به سرعت کم پیل سوختی در پاسخ دهی به تغییرات توان، باید نوسان جریان کشیده شده از آن حداقل باشد. در این مبدل ها با استفاده از ساختار مناسب سعی بر آن می شود که نوسانات جریان در حداقل خود قرار گیرند. وهمچنین باید دارای بهره ولتاژ بالاتری نسبت به مبدل های افزاینده مرسوم داشته باشند.
در این پایان نامه، مبدل های الکترونیک قدرت مورد استفاده در سیستم های هیبریدی از منابع انرژی های نو، مورد بررسی قرار می گیرد و با بررسی مشکلات مبدل های موجود، سعی در طراحی و ارائه مبدلی دارد که تا حداکثر پوشش بر مشکلات مبدل های موجود را ارائه نماید. در این پایان-نامه، یک سیستم هیبریدی از منابع انرژی های نو (PV/FC/Battery) برای طراحی مبدل، در نظر گرفته می شود و تحلیل برای آن سیستم ارائه می گردد. نتایج حاصل از شبیه سازی کامپیوتری در حالت های کاری مختلف سیستم، ارائه می شوند. در فصل بعدی، یک مرور جامعی از مبدل های به کار گرفته شده برای سیستم های هیبریدی آورده شده است. در فصل سوم،سیستمها وروش های مورد استفاده در ساختارپیشنهادی مورد بررسی قرار گرفته است. در فصل چهارم نیز، مبدل پیشنهادی مورد بررسی قرار گرفته و نتایج حاصل از شبیه سازی در این فصل گنجانده شده است. در پایان، نتیجه گیری های کلی و برخی پیشنهادات برای مبدل پیشنهادی ارائه شده است.

فهرست مطالب:
فصل اول: مقدمه
فصل دوم: بررسی منابع
2-1- مقدمه
2-2- سیستمهای هیبرید انرژی الکتریکی از منابع تجدیدپذیر
2-2-2- سیستمهای متصل به شبکه (Grid Connected)
2-2-1- سیستمهای مستقل از شبکه (Stand Alone)
2-3- اصول اساسی شکل گیری مبدلهای الکترونیک قدرت در سیستمهای PV و FC
2-4- مرور مراجع سیستم های هیبرید
2-4-1- روشهای سنتی تشکیل ساختار سیستمهای هیبرید
2-4-2- سیستمهای هیبرید مبتنی بر مبدلهای چند ورودی (MICs)
2-4-2-1 مبدلهای چند ورودی غیر ایزوله
2-5- هدف و لزوم انجام پایاننامه
فصل سوم: معرفی سیستمها و روشهای مورد استفاده در ساختار پیشنهادی
3-1- مقدمه
3-3- مولد توان پیل سوختی (FC)
3-3-1- انواع پیل سوختی
3-3-2- اصول کارکرد پیل سوختی پلیمری (PEMFC)
3-3-3- بازده پیل سوختی
3-4- مولد توان باتری
3-4-1- دسته بندی باتریها
3-4-2- باتریهای سربی- اسیدی (Lead-acid battery)
3-4-2-1 حالت دشارژ باتری
3-4-2-2 حالت شارژ باتری
3-4-3- مدلسازی باتری سربی- اسیدی
3-4-4- حالت شارژ باتری (SOC)
3-2- مولد توان فتوولتائیک (PV)
3-2-1- طرح مسئله MPPT (ردیابی نقطه توان ماکزیمم )
3-2-1-1 روش P&O
3-5- جمع بندی فصل
فصل چهارم: بحث و نتایج
4-1- مقدمه
4-2- ساختار مبدل پیشنهادی و مدهای عملکرد آن
4-2-1- مد عملکرد اول (تامین توان مورد نیاز بار توسط PV و FC بدون مشارکت باتری)
4-2-2- مد عملکرد دوم (تامین بار توسط PV، FC و باتری)
4-2-3- مد عملکرد سوم (تامین توان مورد نیاز بار توسط PV و FC و شارژ باتری)
4-4- نحوه عملکرد مبدل در حالت وجود تنها یک منبع
4-5- تعیین مد عملکرد مدار
4-6- بررسی نتایج شبیه سازی
4-7- نتیجه گیری
فصل پنجم: نتیجه گیری و پیشنهادات
5-1- نتیجه گیری کلی
5-2- پیشنهادات
فصل ششم: مراجع

فهرست شکل ها:
شکل 2-1: نمونهای از سیستم کوپل شده در لینک AC از مرجع [3].
شکل 2-2: نمونهای از سیستم کوپل شده در لینک DC از مرجع [6].
شکل 2-3: سیستم هیبرید مرجع[11].
شکل 2-4: سیستم هیبرید مرجع [12].
شکل 2-5: سیستم هیبرید باکوپل لینک DC [17].
شکل 2-6:سیستم هیبرید مرجع [18].
شکل 2-7: سیستم هیبرید مرجع [19].
شکل 2-8: شماتیک مداری مبدل MIC مرجع [20].
شکل 2-9: سیستم هیبرید مرجع [21].
شکل 2-10:شماتیک مداری پیشنهاد شده در [22].
شکل 2-11: شماتیک مداری پیشنهاد شده در [23].
شکل 2-12: سیستم کنترلی مبدل هیبرید مرجع [24].
شکل 2-13: سیستم هیبرید مرجع[24].
شکل 2-14: سیستم هیبرید مرجع[25].
شکل 3-1: سیستم کنترلی مبدل هیبرید مرجع[25]
شکل 3-5: نمای کلی یک پیل سوختی.
شکل 3-6: نحوه عملکرد یک پیل سوختی PEM.
شکل 3-9: حالت دشارژ باتری.
شکل 3-10: حالت شارژ باتری.
شکل 3-11: مدار معادل باتری.
شکل 3-1: مدار معادل سلول فتو ولتاییک
شکل 3-3: تغییرات جریان و توان PV برحسب تغییرات ولتاژ PV برای تابشهای متفاوت و درجه حرارت یکسان
شکل 3-3: تغییرات توان PV برحسب تغییرات جریان PV برای تابشهای متفاوت و درجه حرارت یکسان
شکل 3-4: فلوچارت الگوریتم P&O.
شکل 4-1: شماتیک کلی از مبدل پیشنهادی.
شکل 4-2: مدار مبدل چند ورودی-تک خروجی پیشنهادی.
شکل 4-3: حالت های کلیدزنی مختلف در مد عملکرد اول مبدل.
شکل 4-4: شکل موجهای حالت دائم سیگنالهای گیت برای هر چهار کلید قدرت و تغییرات شکل موجهای جریان و ولتاژ سلف های L1 و L2 در مد عملکرد اول مدار.
شکل 4-5: حالت های کلیدزنی مختلف در مد عملکرد دوم مبدل.
شکل 4-6: شکل موجهای حالت دائم سیگنالهای گیت برای هر چهار کلید قدرت و تغییرات شکل موجهای جریان و ولتاژ سلف های L1 و L2 در مد عملکرد دوم مدار.
شکل 4-7: حالت های کلیدزنی مختلف در مد عملکرد سوم مبدل.
شکل 4-8: شکل موجهای حالت دائم سیگنالهای گیت برای هر چهار کلید قدرت و تغییرات شکل موجهای جریان و ولتاژهای اندوکتانس های L1 و L2 در مد عملکرد سوم مدار.
شکل 4-9: حالت های کلیدزنی مختلف در حالت عدم حضور پیل سوختی.
شکل 4-10: حالت های کلیدزنی مختلف درحالت عدم حضور پنل خورشیدی.
شکل 4-11: نتایج شبیه سازی در مد عملکرد اول.
شکل 4-12: نتایج شبیه سازی در مد عملکرد دوم.
شکل 4-13: نتایج شبیه سازی در مد عملکرد سوم.

فهرست جداول:
جدول 3-1: پارامترهای آرایه فتوولتائیک.
جدول 4-2: پارامترهای شبیه سازی مبدل.

منابع و مأخذ:
[1] K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,& IEEE Trans. Power Deli., vol. 56, no. 4, pp. 1212–1222, Apr. 2009.
[2] N. Kato, K. Kurozumi, N. Susuld, and S. Muroyama, “Hybrid power-supply system composed of photovoltaic and fuel-cell systems,& in Proc. International Telecomunications Energy Conf., 2001, pp. 631–635.
[3] C. Wang and M. H. Nehrir, “Power management of a stand-alone Wind/Photovoltaic/Fuel cell energy system,& IEEE Trans. Energy Conv., vol. 23, no. 3, pp. 957-967, Sept. 2008.
[4] P. Thounthong, S. Rael, and B. Davat, “Control strategy of fuel cell and supercapacitor association for a distributed generation system,& IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 3225–3233, Dec. 2007.
[5] O. C. Onara, M. Uzunoglu, and M. S. Alam, “Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra capacitor hybrid power system,& Journal of Power Sources, vol. 185, no. 2, pp. 1273–1283, Apr. 2008.
[6] K. N. Reddy and V. Agrawal, “Utility-interactive hybrid distributed generation scheme with compensation feature,& IEEE Trans. Energy Conv., vol. 22, no. 3, pp. 666-673, Sept. 2007.
[7] R. Gopinath, S. Kim, J. H. Hahn, P. N. Enjeti, M. B. Yeary, and J. W. Howze, “Development of a low cost fuel cell inverter system with DSP control,& IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1256–1262, Sept. 2004.
[8] X. Huang, X. Wang, T. Nergard, J. S. Lai, X. Xu, and L. Zhu, “Parasitic ringing and design issues of digitally controlled high power interleaved boost converters,& IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1341–1352, Sept. 2004.
[9] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional dc-dc converter for fuel cell and battery application,& IEEE Trans. Power Electron., vol. 19, no. 1, pp. 54–65, Jan. 2004.
[10] Y. C. Chuang and Y. L. Ke, “High-efficiency and low-stress ZVT-PWM DC-to-DC converter for battery charger,& IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3030–3037, Aug. 2008.
[11] Y. M. Chen, Y. Ch. Liu, Sh. Ch. Hung, and Ch. Sh. Cheng, “Multi-input inverter for grid-connected hybrid PV/Wind power system,& IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1070–1077, May. 2007.
[12] A. Khaligh, J. Cao, and Y. J. Lee, “A multiple-input DC–DC converter topology,& IEEE Trans. Power Electron., vol. 24, no. 3, pp. 862–868, Mar. 2009.
[13] Y. Ch. Liu and Y. M. Chen, “A systematic approach to synthesizing multi-input DC–DC converters,& IEEE Trans. Power Electron., vol. 24, no. 1, pp. 116-127, Jan. 2009.
[14] L. Yan, R. Xinbo, Y. Dongsheng, L. Fuxin, and C. K. Tse, “Synthesis of multiple-input DC/DC converters,& IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2372–2385, Sept. 2010.
[15] A. Kwasinski, “Identification of feasible topologies for multiple-input DC–DC converters,& IEEE Trans. Power Electron., vol. 24, no. 3, pp. 856–861, Mar. 2010.
[16] R. Tymerski and V. Vorperian, “Generation and classification of PWM DC-to-DC converters,& IEEE Trans. Aerosp. And Electron. Syst., vol. 24, no. 6, pp. 743–754, Nov. 1988.
[17] J. Hui, A. Bakhshai, and P. K. Jain, “A hybrid wind-solar energy system: A new rectifier stage topology,& in Proc. IEEE APEC’ 25, 2010, pp. 155 – 161.
[18] P. Thounthong, S. Pierfederici, J. P. Martin, M. Hinaje, and B. Davat, “Modeling and control of fuel cell/supercapacitor hybrid source based on differential flatness control,& IEEE Trans. Vehicular Tech., vol. 59, no. 6, pp. 2700–2710, Mar. 2010.
[19] L. Hui, D. Zhong, W. Kaiyu, L. M. Tolbert, and L. Danwei, “A Hybrid Energy System Using Cascaded H-bridge Converter,& in Proc. IEEE Industry Applications Conf., 2006, 198 – 203.
[20] L. Solero, A. Lidozzi, and J. A. Pomilio, “Design of multiple-input power converter for hybrid vehicles,& IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1007–1016, Sep. 2005.
[21] M. Veerachary, “Multi-input integrated buck-boost converter for photovoltaic applications,& in Proc. IEEE International Sustainable Energy Technologies Conf., 2008, pp. 546 – 551.
[22] F. Nejabatkhah, S. Danyali, S.H. Hosseini, M. Sabahi, S.M. Niapour , “Modeling and Control of a New Three-Input DC–DC Boost Converter for Hybrid PV/FC/Battery Power System,& IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2309- 2324, 2012.
[23] . S. Danyali, S.H. Hosseini, G.B. Gharehpetian, “New Extendable Single-Stage Multi-input DC–DC/AC Boost Converter,& IEEE Trans. Power Electron., vol. 29, no. 2, pp. 775–788, 2014.
[24] S. H. Hosseini, S. Danyali, F. Nejabatkhah, “Multi-input DC boost converter for grid connected hybrid PV/FC/Battery power system,& in Proc. IEEE EPEC, Canada, 2010, pp. 1–6.
[25] S. H. Hosseini, Farzam Nejabatkhah, and S. Danyali, “Grid connected Hybrid PV/FC/Battery power system based on cascade H-Bridge multilevel inverter,& in Proc. IEEE EPEC, Canada, 2011, pp. 1036–1041
[26] H. Krishnaswami and N. Mohan, “Three-port series-resonant DC–DC converter to interface renewable energy sources with bidirectional load and energy storage ports,& IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2289–2297, Sep. 2010.
[27] Y. M. Chen, Y. Ch. Liu, and F. Y. Wu, “Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications,& IEEE Trans. Ind. Electron., vol. 38, no. 4, pp. 1096–1103, Jul/Aug. 2002.
[28] Z. Chuanhong, S. D. Round, and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,& IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443–2453, Sep. 2008.
[29] H. Krishnaswami and N. Mohan, “A current-fed three-port bi-directional DC-DC converter,& in Proc. IEEE Telecommunications Energy Conf., 2007, pp. 523-526.
[30] H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Family of multiport bidirectional DC–DC converters,& in Proc. IEE Electr. Power Appl., 2006, pp. 451-458.
[31] D. Liu and H. Li, “A ZVS bi-directional DC–DC converter for multiple energy storage elements,& IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1513–1517, Sept. 2006.
[32] J. L. Duarte, M. Hendrix, and M. G. Simoes, “Three-port bidirectional converter for hybrid fuel cell systems,& IEEE Trans. Power Electron., vol. 22, no. 2, pp. 480–487, Mar. 2007.
[33] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Three-port triple-half-bridge bidirectional converter with zero-voltage switching,& IEEE Trans. Power Electron., vol. 23, no. 2, pp. 782–792, Mar. 2008.
[34] R. J. Wai, C. Y. Lin, L. W. Liu, and Y. R. Chang, “High-efficiency single-stage bidirectional converter with multi-input power sources,& in Proc. IET Electr. Power Appl., 2006, pp.763-777.
[35] R. J. Wai, Ch. Y. Lin, and Y. R. Chang, “High step-up bidirectional isolated converter with two input power sources,& IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2629-2643, July. 2009.
[36] R. J. Wai, Ch. Y. Lin, J. J. Liaw, and Y. R. Chang, “Newly designed ZVS multi-input converter,& IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 555-566, Feb. 2011.
[37] Zh. Qian, O. A. Rahman, H. A. Atrash, and I. Batarseh, “Modeling and control of three-port DC/DC converter interface for satellite applications,& IEEE Trans. Power Electron., vol. 25, no. 3, pp. 637–649, Mar. 2010.
[38] Zh. Qian, O. A. Rahman, and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,& IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877–1887, Jul. 2010.
[39] I. Takahashi and T. Noguchi, “A new quick response and high efficiency control strategy for an induction motor,& IEEE Trans, Ind. Appl, vol.22, no.5, pp. 820–827, Sep. 1986.
[40] T. Ohnishi, “Three phase PWM converter/inverter by means of instantaneous active and reactive power control,& in Proc of the International Conference on Industrial Electronics, Control and Instrumentation, IECON ’91. vol. 1, pp. 819–824, October–November 1991.
[41] P. Cortes, M. P. Kazrnierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, “Predictive con trol in power electronics and drives,& IEEE Trans. Ind. Electron, vol. 55, no. 12, pp. 4312-4324, Dec 2008.
[42] J. Holtz and S. Stadtfeld, "A predictive controller for the stator current vector of AC machines fed from a switched voltage source,& in International Power Electronics Conference, IPEC, Tokyo, pp. 1665-1675, 1983.
[43] P. Mutschler, "A new speed-control method for induction motors,& in Conf. of PCIM'98, Nuremberg, pp. 131-136, May. 1998.
[44] T. Kawabata, T. Miyashita, and Y. Yamamoto, "Dead beat control of three phase PWM inverter,& IEEE Transactions on Power Electronics, vol. 5, no. 1, pp. 21-28, January 1990.
[45] O. Kukrer, "Discrete-time current control of voltage-fed three-phase PWM inverters,& IEEE Transactions on Industrial Electronics, vol. 11, no. 2, pp. 260-269, March 1996.
[46] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, "Model predictive control - a simple and powerful method to control power converters,& IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826_1838, June 2009.
[47] L. Wang and Ch. Sigh, “Multicriteria design of hybrid power generation systems based on modified particle swarm optimization algorithm,& IEEE Trans. Energy Conv., vol. 24, no. 1, pp. 12-14, Mar. 2009.
[48] S. Jalilzadeh, A. Rohani, H. Kord, and M. Nemati, “Optimal design of a hybrid Photovoltaic/FC energy system for stand-alone application,& in Proc. IEEE ISIE’02, L’Aquila, Italy, 2009, pp. 1036–1041.
[49] D. B. Nelson, M. H. Nehrir, and C. Wang, “Unit sizing of stand-alone hybrid Wind/PV/Fuel Cell power generation systems,& in Proc. IEEE ISIE’02, L’Aquila, Italy, 2005, pp. 1–7.
[50] W. D. Kellogg, M. H. Nehrir, G. Venkataramanan, and V. Gerez, “Generaton unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid Wind/PV systems,& IEEE Trans. Energy Conv., vol. 13, no. 1, pp. 70-74, Mar. 1998.
[51] S.H. Hosseini, A Farakhor, S Khadem Haghighian, “Novel algorithm of MPPT for PV array based on variable step Newton-Raphson method through model predictive control,& 13th International Conference on Control, Automation and Systems (ICCAS), south Korea, 2013, pp. 1577- 1582.
[52] F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama, and Y. Shiota, “Modeling and operation of a 10kW photovoltaic power generator using equivalent electric circuit method,& in Proc. IEEE PVSC’ 28, 2000, pp. 1703 –1706.
[53] M. Masoum, “Design, construction and testing of a voltage-based Maximum Power Point Tracker (VMPPT) for small satellite power supply,& 13th Annual AIAA/USU Conference on Small Satellite.
[54] N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,& IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[55] EG&G Technical Services, Inc “Fuel Cell Handbook, (Seventh Edition)& ,November 2004.
[56] Jin Woo Jung, M.S.E.E. “Modeling and Control of Fuel Cell Based Distributed Generationystems& Doctor of Philosophy thesis in Engineering, The Ohio State University, 2005.
[57] Rekha T.Jagaduri, Ghadir Radman, “Modeling and Control of Distributed Generation System Including PEM Fuel Cell and Gas Turbine& , Electric Power Systems Research 77, pp.83–92, 2007.
[58] EG&G Technical Services, Inc “Fuel Cell Handbook, (Seventh Edition)& ,November 2004.
[59] J. Jia, Q. Li, Y.Wang, Y. T. Cham, and M. Han, “Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell,& IEEE Trans. Energy Conv., vol. 24, no. 1, pp. 283-291, Mar. 2009.
[60] Kaushik Rajashekara, “Hybrid Fuel-Cell Strategies for Clean Power Generation& , IEEE Trans. IndAppl,vol.41, NO.3, pp.682-689, May/Jun 2005.
[61] Phatiphat Thounthong, Stephan R.el, Bernard Davat. “Control Algorithm of Fuel Cell and Batteries for Distributed Generation System& , IEEE Trans.Energy Conv, Vol.23, NO.1, .pp.148–155, Mar 2008.
[62] M. Durr, A. Cruden, S. Gair, and J. R. McDonald, “Dynamic model of a lead acid battery for use in a domestic fuel cell system,& Elsevier Journal of Power Sources, vol. 161, no. 2, pp. 1400–1411, Oct. 2006.

              نوع فایل: word قابل ویرایش 95 صفحه   چکیده: در این پایان نامه یک مبدل DC به DC افزاینده برای منابع انرژی تجدیدپذیر PV/FC به همراه یک المان ذخیره‌کننده انرژی، باتری، پیشنهاد می شود. مبدل پیشنهادی دو پورت توان یک ‌‌جهته برای منابع توان ورودی و یک پورت توان دوجهته برای المان ذخیره کننده انرژی را در یک ساختار واحد فراهم م ...

پایان


نامه


جهت


اخذ


مدرک


رشته


برق


قدرت


الکترونیک


مخابرات


قدرت


کارشناسی


ارشد


کلاسی


تحقیق


پایان


دوره


پایان


نامه


طراحی


و


کنترل


یک


مبدل


DCبرDC


چند


کاربرد برق در صنایع شیمیایی

یکشنبه 7 آذر 1395 ساعت 16:34
کاربرد برق در صنایع شیمیایی
کاربرد برق در صنایع شیمیایی
کاربرد برق در صنایع شیمیایی اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال1800م این آزمایش را انجام داد، شناخته می شده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال 1878م، توماس ادیسون جایگزین عملی تجاری ای را برای روشنایی های گازی و سیستم های حرارتی ایجاد کرد و به فروش رساند که از الکتریسته جریان مستقیمی استفاده می کرد که بطور منطقه ای تولید و توزیع شده بود، استفاده می کرد. در سیستم جریان مستقیم ادیسون، ایستگاه های تولید توان اضافی می بایست نصب می شدند. بدلیل اینکه ادیسون قادر نبود سیستمی را تولید کند که به ژنراتورهای چندگانه اجازه بدهد که به یکدیگر متصل شوند، گسترش سیستم او نیاز داشت که تمامی ایستگاه های تولید جدید مورد نیاز ساخته شوند.
در قالب word و در 16 صفحه آماده شده است.

اگرچه که الکتریسته به عنوان نتیجه واکنش شیمیایی ای که در یک پیل الکترولیک از زمانی که الساندرو ولتا در سال1800م این آزمایش را انجام داد، شناخته می شده است، اما تولید آن به این روش گران بوده و هست. در سال 1831م، میشل فارادی ماشینی ابداع کرد که از حرکت چرخشی تولید الکتریسته می کرد، اما حدود پنجاه سال طول کشید تا این فن آوری از نظر اقتصادی مقرون به صرفه شود. در سال 1878م، توماس ادیسون جایگزین عملی تج ...

کاربرد


برق


صنایع


شیمیایی


صنعت برق


صنعت


شیمی

طرح توجیهی خدمات برق رسانی

شنبه 22 آبان 1395 ساعت 08:35
طرح توجیهی خدمات برق رسانی
طرح توجیهی خدمات برق رسانی شبکه های برق
طرح توجیهی خدمات برق رسانی
طرح توجیهی خدمات برق رسانی شبکه های برق جهت مرمت , توسعه و ساماندهی در زمینهای کشاورزی , شهری , روستایی و ... ...

برق


خدمات برق


برق رسانی

برچسب‌ها: برق، خدمات برق، برق رسانی

دانلود تحقیق الکترونیک قدرت و کاربرد های آن در درایورها شامل یکسوسازهاو انواع مبدلها

پنج‌شنبه 13 آبان 1395 ساعت 07:04
دانلود تحقیق الکترونیک قدرت و کاربرد های آن در درایورها شامل یکسوسازهاو انواع مبدلها
دانلود تحقیق الکترونیک قدرت و کاربرد های آن در درایورها شامل یکسوسازهاو انواع مبدلها
دانلود تحقیق الکترونیک قدرت و کاربرد های آن در درایورها شامل یکسوسازهاو انواع مبدلها تکنولوژی الکترونیک قدرت (Power Electronics) ، بهره وری و کیفیت
فرایندهای صنعتی مدرن را بی وقفه بهبود می بخشد. امروزه با کمک همین
تکنولوژی امکان استفاده از منابع انرژی غیرآلاینده بازیافتی (ReneWable Energy) ، نظیر باد و فتو ولتائیک فراهم شده است.
تخمین زده میشود که با استفاده از الکترونیک قدرت، حدود ۱۵ تا ۲۰ درصد امکان
صرفه جوئی انرژی الکتریکی وجود دارد.در واقع با کاهش بی وقفه قیمت ها در
عرصه الکترونیک قدرت زمینه برای حضور آنها در کاربردهای صنعتی، حمل ونقل
و حتی خانگی فراهم می گردد.
نیروی محرک بیشتر پمپها و فن ها موتورهای القائی هستند که در دور ثابت کار
میکنند. لیکن در سالهای اخیر با پیشرفتهای انجام گرفته در زمینه تکنولوژی الکترونیک
قدرت ، استفاده از موتورهای القائی قفس سنجابی همراه با کنترل کننده دور موتور
(AC DRIVE یا اینورتر یا بطور ساده درایو) رو به گسترش است .
درایوها دستگاههائی هستند که توان ورودی با ولتاژ و فرکانس ثابت را به توان
خروجی با ولتاژ و فرکانس متغیر تبدیل می کنند. باید توجه کرد که دور یک موتور
تابعی از فرکانس منبع تغذیه آن است. برای این منظور یک درایو نخست برق شبکه
را به ولتاژ DC تبدیل کرده و سپس آنرا با استفاده از یک اینورتر مجددا به ولتاژ
ACبا فرکانس و ولتاژ متغیر تبدیل می کند.
همانطور که مشاهده می کنید قسمت اینورتر متشکل از سوئیچهای قدرتی است که در
سالهای اخیر تغییرات تکنولوژیک زیادی پیدا کرده اند. در واقع با معرفی سوئیچهای
قدرتی چون IGBT با قیمتهای رو به کاهش، زمینه برای عرضه درایوهای با قیمت
مناسب فراهم شد. در هر حال خاطر نشان میکنیم که شکل موج خروجی درایو
ترکیبی از پالسهای DC با دامنه ثابت است. این موضوع موجب میشود که خود درایو
منشا اختلالاتی در کار موتور شود.
برای مثال کیفیت شکل موج خروجی درایو می تواند سبب اتلاف حرارتی اضافی
ناشی از مولفه های هارمونیکی فرکانس بالا در موتور شده و یا موجب نوسانات
گشتاور Torque Pulsationدر موتور گردد. با این حال درایوهای امروزی بدلیل
استفاده از سوئیچهای قدرت سریع این نوع مشکلات را عملا حذف کرده اند.
کنترل کننده های دور موتورهای الکتریکی هر چند که ادوات پیچیده ای هستند ولی
چون در ساختمان آنها از مدارات الکترونیک قدرت استاتیک استفاده می شود و فاقد
قطعات متحرک می باشند، از عمر مفید بالائی برخوردار هستند .
مزیت دیگر کنترل کننده های دور موتور توانائی آنها در عودت دادن انرژی مصرفی
در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه می باشد . در چنین
شرائطی با استفاده از کنترل کننده های دور مدرن می توان از اتلاف این نوع انرژی
جلوگیری نمود .
بطوریکه در برخی کاربردها قیمت انرژی بازیافت شده از این طریق ، در کمتر از
یکسال معادل هزینه سرمایه گذاری سیستم بازیافت انرژی می شود . کنترل کننده های
دور موتور انواع مختلفی دارند. آنها قادرند انواع موتورهای AC و DC را کنترل
کنند.
قیمت کنترلرها وابسته به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. ساده
ترین روش کنترل موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/F
ثابت) میباشد. اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده
قرار میگیرد. این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری
خوب عمل میکنند.
مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع کنترلرها برای
کاربردهای با پاسخ سریع مناسب نمیباشند. روبوتها و ماشینهای ابزار نمونه هائی از
کاربردهای با دینامیک بالا هستند.
در این کاربردها روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی
برداری با تفکیک مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و
کنترل آنها با استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC نظیر
موتور DC کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ
گشتاور سریع آنها در موتورهای AC نیز در دسترس خواهد بود. برای مثال پاسخ
گشتاور در روشهای برداری حدود۱۰ – ۲۰msو در روشهای کنترل مستقیم گشتاور
(Direct Torque Control )این زمان حدود ۵ms است.

الکترونیک قدرت و کاربرد های آن درایورها
فصل اول : قطعات یکسوساز
این فصل در باره آشنایی با المان های قدرت مانند دیود های قدرت – تریستور-تریاک – FET- MOSFET و .... می باشد.
فصل دوم :مدارهای یکسوکننده
این فصل درباره مدارهای یکسوکننده نیم موج ،تمام موج،نیمه کنترل شده ، تمام کننده شده ،تک فاز ، سه فاز با باراهمی و سلفی بررسی شده و در پایان برای درک کامل مسائل 10 مسئله همراه با جواب تشریحی آورده شده است.
فصل سوم : چاپرهایDC
در بسیاری از کاربردهای صنعتی نیاز به تبدیل منبع DC ثابت به یک منبع DCمتغییر می باشد.که این وظیفه را در صنعت چاپرها برعهده دارند .مشابه ترانسفورماتورهای ac چاپرها میتوانند ولتاژ منبع dcرا به صورت پله ای افزایش یا کاهش دهند.چاپرها چهار توپولوژی پایه دارند 1- باک (کاهنده) 2- بوست (افزاینده) 3- باک – بوست 4- کاک در این فصل نیز چندین مسله با حل تشریحی موجود می باشد.
فصل چهارم : مبدل های DC بهAC
به مبدل های DC به AC اینورتر میگویند .یک اینورتر ولتاژ ورودی مستقیم را به یک ولتاژ خروجی متناوب با دامنه و فرکانس متغییر تبدیل می کند که مهمترین استفاده آن کنترل سرعت موتور جریان متناوب می باشد.در این فصل عملکرد اینورتر های زیر بررسی میشود.
  • اینورتر سر وسط تکفاز
  • اینورتر پل تکفاز
  • اینورتر پل سه فاز
  • اینورتر با منبع ولتاژ ثابت
  • اینورتر با منبع جریان ثابت
فصل پنجم : کموتاسیون
عمل سویچینگ با خاموش و روشن کردن تریستور صورت میگیرد . عمل خاموش کردن تریستور را کموتاسیون میگویند که به دو صورت انجام می شود .
  • کموتاسیون طبیعی
  • کموتاسیون اجباری
فصل ششم: درایوهای DC
درایوهای جریان مستقیم وظیفه کنترل سرعت و راه اندازی نرم موتورهای جریان مستقیم ورا بر عهده دارند و به سه دسته کلی تقسیم بندی می شوند.
  • درایوهای تک فاز
  • درایوهای سه فاز
  • درایوهای چاپر
این جزوه در 93 صفحه در اختیار شما بازدید کننده گان محترم قرار دارد .
فروشگاه اینترنتی دانشجو


تکنولوژی الکترونیک قدرت (Power Electronics) ، بهره وری و کیفیت فرایندهای صنعتی مدرن را بی وقفه بهبود می بخشد. امروزه با کمک همین تکنولوژی امکان استفاده از منابع انرژی غیرآلاینده بازیافتی (ReneWable Energy) ، نظیر باد و فتو ولتائیک فراهم شده است. تخمین زده میشود که با استفاده از الکترونیک قدرت، حدود ۱۵ تا ۲۰ درصد امکان صرفه جوئی انرژی الکتریکی وجود دارد.در واقع با کاهش بی وقفه قیمت ها در ع ...

برق


الکترونیک قدرت


دانلود تحقیق


درایوها


یکسوسازها


کاربردها

مقاله تشخیص عوامل افزایش خطای نسبت تبدیل ترانسفورماتورهای ولتاژ خازنی شبکه برق منطقه ای تهران

سه‌شنبه 11 آبان 1395 ساعت 09:32
مقاله تشخیص عوامل افزایش خطای نسبت تبدیل ترانسفورماتورهای ولتاژ خازنی شبکه برق منطقه ای تهران
دانلود مقاله تشخیص عوامل افزایش خطای نسبت تبدیل ترانسفورماتورهای ولتاژ خازنی شبکه برق منطقه ای تهران
مقاله تشخیص عوامل افزایش خطای نسبت تبدیل ترانسفورماتورهای ولتاژ خازنی شبکه برق منطقه ای تهران فرمت فایل : word (قابل ویرایش) تعداد صفحات : 27 صفحه
فهرست


3
  1. مقدمه
3
  1. شناسایی دلایل افزایش خطای CVT
4
2-1. معرفی عوامل تاثیر گذار بر افزایش خطای CVT
5
2-2. پیشنهاد تست های عیب یابی جهت تعیین علت افزایش خطای CVT
7
  1. تحلیل نتایج عیب یابی CVT های نمونه
11
  1. ارایه راه حل های عملی برای رفع مشکل
14
  1. نکات مورد توجه برای سازنده CVT
15
5-1. بهبود اتصالات
16
5-2. عایق کاری المانهای خازنی
17
5-3. فیلتر FSC
17
5-4. کاهش درصد تغییر تپ با استفاده از المانهای خازنی اضافی
18
  1. تستهای روتین و تکمیلی پیشنهادی برای ترانسفورماتور ولتاژ خازنی
18
6-1. اندازه گیری خطای نسبی CVT با ولت متر در حالت بهره برداری نرمال شبکه
19
6-2. تعیین CVT معیوب با دستگاه تست ساخته شده در این پروژه
20
6-3. بررسیهای تکمیلی برای تعیین وضعیت CVT معیوب


  1. مقدمه
در برخی از پستهای فشار قوی شبکه برق منطقه ای تهران مواردی نظیر قفل شدن رله دیستانس ناشی از عملکرد واحد Fuse Failure داخل رله دیستانس و همچنین مشاهده افت شدید ولتاژ یک فاز در ولت متر روی تابلوی کنترل گزارش شده است که پس از مراجعه کارشناسان شرکت متانیر علت عیب، تغییر نسبت تبدیل CVT تشخیص داده شده و لذا پس از تعویض CVT اشکال مذکور رفع شده است.
هدف از انجام این پروژه یافتن دلیل افزایش خطای نسبت تبدیل و افزایش خطای فاز CVT بر مبنای تستهای عیب یابی بر روی قسمتهای مختلف ترانسفورماتور ولتاژ خازنی می باشد.
به منظور تعیین عیوب CVT در ابتدا بایستی عواملی که ممکن است منجر به افزایش خطای CVT شده باشد را تعیین نمود. برای این منظور در فصل اول گزارش تاثیر پارامترهای مختلف مدار معادل CVT در ایجاد خطا در ترانسفورماتور ولتاژ مورد بررسی قرار گرفت و بر اساس آن در فصل دوم عواملی که می تواند به عنوان منشاء خطا تلقی شود مطرح شده و در جهت بررسی آنها تستهای عیب یابی مناسبی پیشنهاد شد. در فصل سوم گزارش نتایج تستهای عیب یابی پیشنهادی مورد تحلیل قرار گرفته و در نهایت روشهای رفع عیب از CVTهایی که در برق منطقه ای تهران با مشکل مشابهب دچار افزایش خطا شده اند پیشنهاد شده است. لازم به ذکر است که در کلیه CVTهای معیوب مورد بررسی، منشاء افزایش خطا اتصال کوتاه برخی المانهای خازنی مقسم ولتاژ خازنی CVT بوده است.

  1. شناسایی دلایل افزایش خطای CVT
CVT به طور کلی شامل دو قسمت IVT (ترانسفورماتور ولتاژ میانی) و CVD (مقسم ولتاژ خازنی) می­باشد. ترانسفورماتور ولتاژ میانی شامل بخشهای مختلفی از قبیل ترانسفورماتور میانی (به همراه تپ های مربوط به سیم پیچ تنظیم)، سلف جبرانساز (برای ایجاد رزنانس سری با خازنهای CVD و کاهش خطای CVT) و مدار میرا کننده نوسانات فرورزنانس است. مقسم ولتاژ خازنی شامل تعدادی المان خازنی سری شده است که در مجموع خازن های فشار ضعیف (C2) و فشار قوی (C1) را تشکیل می دهد. در شکل (1) مدار معادل الکتریکی CVT مشاهده می­شود.

فرمت فایل : word ( قابل ویرایش) تعداد صفحات : 27 صفحه                 فهرست     3 مقدمه 3 شناسایی دلایل افزایش خطای CVT 4 2-1. معرفی عوامل تاثیر گذار بر افزایش خطای CVT 5 2-2. پیشنهاد تست های عیب یابی جهت تعیین علت افزایش خطای CVT 7 تحلیل نتایج عیب یابی CVT های نمونه 11 ارایه راه حل های عملی برای رفع مشکل 14 نکات مورد توجه ب ...

ولتاژ


ترانسفورماتور


خازن


برق


شبکه برق

مجموعه ای شامل 3 کتاب برای اموزش برنامه نویسی ARDUINO با روش های گام به گام و پروژه های عملی بسیار

یکشنبه 9 آبان 1395 ساعت 20:18
مجموعه ای شامل 3 کتاب برای اموزش برنامه نویسی ARDUINO با روش های گام به گام و پروژه های عملی بسیار
اموزش برنامه نویسی اردوینو
مجموعه ای شامل 3 کتاب برای اموزش برنامه نویسی ARDUINO با روش های گام به گام و پروژه های عملی بسیار ر این قسمت مجموعه از 3 کتاب الکترونیکی به زبان انگلیسی با بیش از 2000 صفحه قرار داده ام تا با روش های گام به گام شروع به یادگیری برنامه نویسی آردوینو بکنید .
آردوینو یکی از نرم افزار های بسیار پرکاربرد در زمینه ی علم رباتیک است و برای دانشجویان رشته ی برق مخصوصا گرایش الکترونیک و کنترل یادگیری ان بسیار ضروری است .

در این قسمت مجموعه از 3 کتاب الکترونیکی به زبان انگلیسی با بیش از 2000 صفحه قرار داده ام تا با روش های گام به گام شروع به یادگیری برنامه نویسی آردوینو بکنید . آردوینو یکی از نرم افزار های بسیار پرکاربرد در زمینه ی علم رباتیک است و برای دانشجویان رشته ی برق مخصوصا گرایش الکترونیک و کنترل یادگیری ان بسیار ضروری است . ...

دانشجویی


اردوینو


arduino


برق


رباتیک

دانلود پایان نامه پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک

شنبه 8 آبان 1395 ساعت 17:38
دانلود پایان نامه پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک
پخش بار بهینه یکی از اساسی ترین مدول های نرم افزارهای موجود در مراکز بهره برداری و برنامه ریزی سیستم های قدرت است که به منظور تنظیم بهینه متغ
دانلود پایان نامه پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک




لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:PDF

تعداد صفحه:157
پایانامه برای دریافت درجه کارشناسی ارشد “M.Sc&
مهندسی برق- قدرت

چکیده :
پخش بار بهینه یکی از اساسی ترین مدول های نرم افزارهای موجود در مراکز بهره برداری و برنامه ریزی سیستم های قدرت است که به منظور تنظیم بهینه متغیرهای تحت کنترل سیستم برای دستیابی به تولیدی مطمئن با کمترین هزینه و بیشترین امنیت و نیز برآوردن اهداف عملیاتی دیگر در سیستم، به شکل های مختلف به کار می روند. علیرغم پیشرفت های چشمگیر به دست آمده در زمینه نرم افزارهای پخش بار بهینه، این مسئله همچنان به عنوان یکی از مشکل ترین مسئله های ریاضی باقی مانده است و الگوریتم کارآمدی که به طور همزمان دارای توانائی های سرعت، انعطاف پذیری و لحاظ پارامتر های قابلیت اطمینان در حل این مسئله باشد، تحت بررسی و مطالعه می باشد.
در این پایان نامه، حل مسئله پخش بار بهینه بر مبنای حداقل کردن تابع هدف به کمک الگوریتم ژنتیک صورت می گیرد و تابع هدف بر پایه حداقل کردن هزینه سوخت مصرفی نیروگاه ها با رعایت پارامترهای قابلیت اطمینان بنا شده است. لحاظ پارامترهای قابلیت اطمینان در تابع هدف به صورت افزودن یک تابع جریمه به تابع هدف می باشد.
همچنین نتایج حاصل از نرم افزار پخش بار بهینه، بر روی شبکه نمونه 30 شینه IEEE انجام پذیرفته و صحت نتایج با مراجع معتبر تائید شده است.
فصل اول:
مقدمه
مهندسین همواره با مسایل مربوط به تضمین سودآوری سرمایه گذاری های انجام شده به منظور تولید محصولات و ارائه خدمات مهندسی، مواجه بوده اند.
تضمین بازگشت سرمایه و سود مناسب سرمایه گذاری های عظیم به عمل آمده در صنعت برق، بهره برداری صحیح، مناسب و اقتصادی از این صنعت را در زمره مهمترین موضوعات مهندسی برق قرار داده است. در این راستا، افزایش راندمان و بازدهی تجهیزات الکتریکی و بهبود بهره برداری از آن در جهت صرفه جویی و حفظ هرچه بیشتر منابع روبه اتمام سوخت های فسیلی از یک طرف و کاهش قیمت تمام شده کیلووات ساعت برق تولیدی برای تولیدکنندگان این کالا با توجه به تورم سالانه و افزایش هزینه روزافزون مواد سوختی، نیروی انسانی و تعمیرات و نگهداری از این تجهیزات از طرف دیگر، از جمله مسایلی است که مهندسان را از دیرباز به خود مشغول کرده است. موفقیت های حاصل از این تلاش مستمر در زمینه ساخت و طراحی افزایش پیوسته، مداوم و قابل توجه راندمان بویلرها، ژنراتورها و دیگر تجهیزات انتقال و توزیع انرژی الکتریکی را به همراه داشته و در زمینه بهره برداری، در نتایج حاصل از تحقیقات دانشمندان و مهندسان کاملاً مشهود و بسیار امیدوار کننده است.
در این رهگذر پخش بار بهینه به عنوان ابزاری کارآمد، نقش بسزایی در بهره برداری هرچه اقتصادی تر از سیستم قدرت ایفا می نماید. به طور کلی، پخش بار اقتصادی وسیله ای برای کنترل توزیع توان حقیق مورد تقاضای مشترکین، بین واحدهای تولید کننده موجود در سیستم قدرت است و از آن در مسایل تبادل اقتصادی بین چند ناحیه سیستم و به مدار آوردن نیروگاه ها استفاده می شود. بعلاوه به عنوان ابزاری در طراحی سیستم های قدرت نیز مورد استفاده قرار می گیرد. مسئله بهره برداری اقتصادی از سیستم قدرت از زمانی مطرح شد که دو یا چند واحد تولید انرژی الکتریکی با یکدیگر در تامین بار یک سیستم الکتریکی مشارکت داشته و ظرفیت کل آنها در مجموع بیش از میزان مصرف بوده و لذا آرایش های متفاوتی از میزان تولید واحدها را به دنبال داشته است.
پخش بار اقتصادی عمدتاً یک مسئله بهینه سازی غیرخطی است که معمولاً هدف آن حداقل نمودن هزینه تولید است. گاهی اهداف دیگری مانند بهبود امنیت سیستم و کاهش صدمات زیست محیطی ناشی از احتراق سوخت های فسیلی در نیروگاه های حرارتی، نیز همزمان مورد نظر است. این بهینه سازی تحت یک دسته قیود معادله ای و نامعادله ای انجام می پذیرند. قیود معادله ای سیستم براساس نوع مدل انتخابی برای شبیه سازی شبکه و قیود نامعادله ای با توجه به محدودیت های فیزیکی و عملیاتی موجود در سیستم تعیین می شوند. بنابراین مسئله پخش بار بهینه در سیستم قدرت را می توان توسط یک مدل بهینه سازی غیرخطی با محدودیت که دارای چندین تابع هدف است، نشان داد.
پخش بار اقتصادی در صورتی که فقط به منظور تعیین میزان تولید حقیقی نیروگاه ها انجام شود و در آن شبیه سازی شبکه تنها با یک معادله تعادل مربوطه به توان های حقیقی صورت پذیرد، پخش بار اقتصادی کلاسیک خوانده می شود. در صورتی که تنظیم دیگر متغیرهای قابل کنترل سیستم به مقدار بهینه خود مدنظر باشد، باید از مدل های دقیق تر برای شبیه سازی شبکه استفاده نمود. چنانچه از معادلات پخش بار سیستم به عنوان مدل شبکه استفاده شود، مسئله به پخش بار بهینه یا به اختصار، OPF تبدیل می گردد.
و...
NikoFile

پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک         لینک پرداخت و دانلود *پایین مطلب*   فرمت فایل:PDF تعداد صفحه:157 پایانامه برای دریافت درجه کارشناسی ارشد “M.Sc” مهندسی برق- قدرت چکیده : پخش بار بهینه یکی از اساسی ترین مدول های نرم افزارهای موجود در مراکز بهره برداری و برنامه ریزی سیستم های قدرت است که به منظور تنظیم بهینه متغیرهای تحت کن ...

الگوریتم ژنتیک


همه چیز درمورد الگوریتم ژنتیک


پخش بار


برق


کارشناسی ارشد


ارشد


برق


شبکه های قدرت


پخش بار بهینه

مبانی مهندسی برق - مرتضی غضنفری - مهندسی پیام نور

جمعه 7 آبان 1395 ساعت 00:08
مبانی مهندسی برق - مرتضی غضنفری - مهندسی پیام نور
دانلود کتاب مبانی مهندسی برق تالیف مهندس مرتضی غضنفری منبع رشته مهندسی دانشگاه پیام نور شامل 502 صفحه کتاب با فرمت pdf
مبانی مهندسی برق - مرتضی غضنفری - مهندسی پیام نور
کتاب مبانی مهندسی برق تالیف مهندس مرتضی غضنفری منبع رشته مهندسی دانشگاه پیام نور شامل 502 صفحه کتاب در قالب فایل pdf ...

دانلود


کتاب


مبانی


مهندسی


برق


مرتضی


غضنفری


صنایع


پیام نور


pdf